Referências:

  1. β-glucan characteristics in human appetite control: a randomized crossover trial. Nutr J, Maio 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/24884934. Acesso em: 18/09/2019.
  2. A, W. et al. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr, Dezembro 2014. Disponível em: https: //www.ncbi.nlm.nih.gov/pubmed/25411276. Acesso em: 18/09/2019.
  3. JT, B. et al. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr, Julho 1994. Disponível em: https://www.ncbi.nlm. nih.gov/pubmed/7956987. Acesso em: 18/09/2019.
  4. JA, N. et al. Modulation of the postprandial phase by beta-glucan in overweight subjects: effects on glucose and insulin kinetics. Mol Nutr Food Res, Março 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18837470. Acesso em: 18/09/2019.
  5. AL, J. et al. Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. Eur J Clin Nutr, Julho 2002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/12080401. Acesso em: 18/09/2019.
  6. B, S. et al. The status of vitamins B6, B12, folate, and of homocysteine in geriatric home residents receiving laxatives or dietary fiber. J Nutr Health Aging, Março 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/20191257. Acesso em: 18/09/2019.
  7. B, S.; I, E. Intervention with dietary fiber to treat constipation and reduce laxative use in residents of nursing homes. Ann Nutr Metab, 2008. Disponível em: https: //www.ncbi.nlm.nih.gov/pubmed/18382081. Acesso em: 18/09/2019.
  8. KURTZ, E. S.; WALLO, W. Colloidal Oatmeal: History, Chemistry and Clinical Properties. Journal of drugs in dermatology, Março 2007. Disponível em: https://www.researchgate.net/publication/6434542_Colloidal_Oatmeal_History_ Chemistry_and_Clinical_Properties. Acesso em: 18/09/2019.
  9. UNIVERSIDADE FEDERAL DE SÃO PAULO. Aveia – Tabela de Composição Química dos Alimentos. 2016. Disponível em: https://tabnut.dis.epm.br/alimento/ 20038/aveia. Acesso em: 18 de set. de 2019.
  10. H, S. et al. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Sci Rep, Março 2008. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/29568082. Acesso em: 18/09/2019.
  11. X, Z. et al. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro. J Agric Food Chem, Março 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26975278. Acesso em: 18/09/2019.
  12. S, L. et al. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol Nutr Food Res, Novembro 2013. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23784800. Acesso em: 18/09/2019.
  13. WL, L. et al. Purple sweet potato anthocyanin exerts antitumor effect in bladder cancer. Oncol Rep, Julho 2018. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/ 29749527. Acesso em: 18/09/2019.
  14. Q, S. et al. Purple sweet potato color ameliorates cognition deficits and attenuates oxidative damage and inflammation in aging mouse brain induced by d-galactose. J Biomed Biotechnol, 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/ 19865488. Acesso em: 18/09/2019.
  15. J, L.; Z, S.; Y, M. Purple sweet potato color attenuates high fat-induced neuroinflammation in mouse brain by inhibiting MAPK and NF-κB activation. Mol Med Rep, Março 2018. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/29344660. Acesso em: 18/09/2019.
  16. MORA, J. R.; IWATA, M.; ANDRIAN, U. H. von. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol, Setembro 2008. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906676/. Acesso em: 18/09/2019.
  17. JW, L. et al. A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr, Maio 2007. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/ 17449599. Acesso em: 18/09/2019.
  18. UNIVERSIDADE FEDERAL DE SÃO PAULO. Batata doce, cozida, assada com casca, sem sal – Tabela de Composição Química dos Alimentos. 2016. Disponível em: https://tabnut.dis.epm.br/alimento/11508/batata-doce-cozida-assada-com-cascasem-sal. Acesso em: 18 de set. de 2019.
  19. TOHDA, C. et al. Diosgenin-Rich Yam Extract Enhances Cognitive Function: A Placebo-Controlled, Randomized, Double-Blind, Crossover Study of Healthy Adults. Nutrients, Outubro 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5691776/. Acesso em: 18 de set. de 2019.
  20. CS, C. et al. Diosgenin ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. Am J Chin Med, 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/21598421. Acesso em: 18 de set. de 2019.
  21. WH, W. et al. Estrogenic effect of yam ingestion in healthy postmenopausal women. J Am Coll Nutr, Agosto 2005. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/ 16093400. Acesso em: 18 de set. de 2019.
  22. WC, H.; FL, H.; MH, L. Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Med, Dezembro 2002. Disponível em: https://www.ncbi.nlm. nih.gov/pubmed/12494332. Acesso em: 18 de set. de 2019.
  23. SON, I. S. et al. Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats. Prev Nutr Food Sci, Junho 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4103732/. Acesso em: 18 de set. de 2019.
  24. ROSA CASAS et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS One, Junho 2014. Disponível em: https://www.ncbi. nlm.nih.gov/pubmed/24925270. Acesso em: 18 de set. de 2019.
  25. CHIU, C. et al. Antioxidant and anti-inflammatory properties of Taiwanese yam (Dioscorea japonica Thunb. var. pseudojaponica (Hayata) Yamam.) and its reference compounds. Food Chem, Novembro 2013. Disponível em: https://www.ncbi.nlm.nih. gov/pubmed/23790890. Acesso em: 18 de set. de 2019.
  26. GO, H. et al. Antidiabetic Effects of Yam (Dioscorea batatas) and Its Active Constituent, Allantoin, in a Rat Model of Streptozotocin-Induced Diabetes. Nutrients, Outubro 2015. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632431/. Acesso em: 18 de set. de 2019.
  27. ROSIDA et al. Hypoglycemic Effect of Modified Water Yam Flour (Dioscorea alata) on Diabetic Wistar Rats (Rattus norvegicus). Journal of Food and Nutrition Research, 2016. Disponível em: http://pubs.sciepub.com/jfnr/4/1/4/. Acesso em: 18 de set. de 2019.
  28. LI, T. et al. The beneficial effects of purple yam (Dioscorea alata L.) resistant starch on hyperlipidemia in high-fat-fed hamsters. Food Funct, Maio 2019. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/31025041. Acesso em: 18 de set. de 2019.
  29. CHEN, H. et al. Effects of Taiwanese yam (Dioscorea japonica Thunb var. pseudojaponica Yamamoto) on upper gut function and lipid metabolism in Balb/c mice. Nutrition, Agosto 2003. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/12831952. Acesso em: 18 de set. de 2019.
  30. HELEN, O. T. et al. Dioscorea alata L. Reduces Body Weight by Reducing Food Intake and Fasting Blood Glucose Level. British Journal of Medicine & Medical Research, 2013. Disponível em: https://pdfs.semanticscholar.org/a7c4/ cea023e4762818903da3f0b41998d79623ed.pdf. Acesso em: 18 de set. de 2019.
  31. UNIVERSIDADE ESTADUAL DE CAMPINAS; NÚCLEO DE ESTUDOS E PESQUISAS EM ALIMENTACÃO. Tabela Brasileira de Composição de Alimentos. 4. ed. BookEditora, 2011. 164 p. Disponível em: http://www.cfn.org.br/wp-content/uploads/ 2017/03/taco_4_edicao_ampliada_e_revisada.pdf. Acesso em: 18 de set. de 2019.
  32. FARDET, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev, Junho 2010. Disponível em: https: //www.ncbi.nlm.nih.gov/pubmed/20565994. Acesso em: 18 de set. de 2019.
  33. NUTRELLA. Valor Nutricional Pão Integral 100% Supreme. 2019. Disponível em: https://www.nutrella.com.br/produtos/supreme/100. Acesso em: 18 de set. de 2019.
  34. OC, O. et al. Blood glucose response on consumption of cassava varieties (Garri) in healthy Nigerian subjects. Journal of Nutrition and Human Health (2018), Janeiro 2018. Disponível em: http://www.alliedacademies.org/articles/blood-glucose-responseon-consumption-of-cassava-varieties-garri-in-healthynigerian-subjects-9503.html. Acesso em: 18 de set. de 2019.
  35. PARK, Y. et al. Dietary fiber intake and mortality in the NIH-AARP Diet and Health Study. Arch Intern Med, Fevereiro 2011. Disponível em: https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC3513325/. Acesso em: 18 de set. de 2019.
  36. AUNE, D. et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response metaanalysis of prospective studies. BMJ, Junho 2016. Disponível em: https://www.ncbi. nlm.nih.gov/pubmed/27301975. Acesso em: 18 de set. de 2019.
  37. NAKAYAMA, T. et al. Eating glutinous brown rice twice a day for 8 weeks improves glycemic control in Japanese patients with diabetes mellitus. Nutr Diabetes, Maio 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518808/. Acesso em: 18 de set. de 2019.
  38. SUN, Q. et al. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med, Junho 2010. Disponível em: https://www.ncbi.nlm.nih.gov/ pubmed/20548009/. Acesso em: 18 de set. de 2019.
  39. LIU, S. et al. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr, Novembro 2003. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/ 14594777. Acesso em: 18 de set. de 2019.
  40. KAZEMZADEH, M. et al. Effect of Brown Rice Consumption on Inflammatory Marker and Cardiovascular Risk Factors among Overweight and Obese Non-menopausal Female Adults. Int J Prev Med, Abril 2014. Disponível em: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC4018597/. Acesso em: 18 de set. de 2019.
  41. OKUDA, M. et al. Highly water pressurized brown rice improves cognitive dysfunction in senescence-accelerated mouse prone 8 and reduces amyloid beta in the brain. BMC Complement Altern Med, Março 2018. Disponível em: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC5869774/. Acesso em: 18 de set. de 2019.
  42. RANILLA, L. G. et al. Evaluation of indigenous grains from the Peruvian Andean region for antidiabetes and antihypertension potential using in vitro methods. Journal of Medicinal Food, Agosto 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/ 19735168. Acesso em: 18 de set. de 2019.
  43. BERTI, C. et al. In vitro starch digestibility and in vivo glucose response of glutenfree foods and their gluten counterparts. Eur J Nutr, Agosto 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15309439. Acesso em: 18 de set. de 2019.
  44. ROBERTS, S. B. High-glycemic Index Foods, Hunger, and Obesity: Is There a Connection. Nutrition Reviews, Abril 2009. Disponível em: https://onlinelibrary.wiley. com/doi/abs/10.1111/j.1753-4887.2000.tb01855.x. Acesso em: 18 de set. de 2019.
  45. SLAVIN, J. L. Dietary fiber and body weight. Março 2005. Disponível em: https: //www.ncbi.nlm.nih.gov/pubmed/15797686/. Acesso em: 18 de set. de 2019.
  46. UNIVERSIDADE FEDERAL DE SÃO PAULO. Tabela de Composição Química dos Alimentos. 2016. Disponível em: https://tabnut.dis.epm.br/index.php/alimento/ 20137/quinoa-cozida. Acesso em: 18 de set. de 2019.
  47. OKADA, M.; OKADA, Y. Effects of methanolic extracts from broad beans on cellular growth and antioxidant enzyme activity. Environ Health Prev Med, Novembro 2007. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723485/. Acesso em: 18 de set. de 2019.
  48. HALTON, T. L.; HU, F. B. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr, Outubro 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15466943. Acesso em: 18 de set. de 2019.
  49. MESSINA, V. Nutritional and health benefits of dried beans. Am J Clin Nutr, Julho 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/24871476. Acesso em: 18 de set. de 2019.
  50. HA, V. et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ, Maio 2013. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4016088/. Acesso em: 18 de set. de 2019.
  51. JM, A. Iron deficiency anemia. A study of risk factors. Saudi Med J, Junho 2001. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/11426238/. Acesso em: 18 de set. de 2019.
  52. WALLACE, T. C.; MURRAY, R.; ZELMAN, K. M. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients, Dezembro 2016. Disponível em: https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC5188421/. Acesso em: 18 de set. de 2019.
  53. PITTAWAY, J. K.; ROBERTSON, I. K.; BALL, M. J. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J Am Diet Assoc, Junho 2008. Disponível em: https: //www.ncbi.nlm.nih.gov/pubmed/18502235/. Acesso em: 18 de set. de 2019.
  54. UNIVERSIDADE FEDERAL DE SÃO PAULO. Grao-de-bico, semente madura, cozido, sem sal – Tabela de Composição Química dos Alimentos. 2016. Disponível em: https://tabnut.dis.epm.br/index.php/alimento/16057/grao-de-bico-semente-maduracozido-sem-sal. Acesso em: 18 de set. de 2019.
  55. ASLANI, Z. et al. Lentil Sprouts Effect On Serum Lipids of Overweight and Obese Patients with Type 2 Diabetes. Health Promot Perspect, Outubro 2015. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26634200. Acesso em: 18 de set. de 2019.
  56. STEPHEN, A. M. et al. Effect of green lentils on colonic function, nitrogen balance, and serum lipids in healthy human subjects. Am J Clin Nutr, Dezembro 1995. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/7491890. Acesso em: 18 de set. de 2019.
  57. GANESAN, K.; XU, B. Polyphenol-Rich Lentils and Their Health Promoting Effects. Int J Mol Sci, Novembro 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC5713359/. Acesso em: 18 de set. de 2019.
  58. LUKITO, W. Candidate foods in the asia-pacific region for cardiovascular protection: nuts, soy, lentils and tempe. Asia Pac J Clin Nutr, 2001. Disponível em: https://www. ncbi.nlm.nih.gov/pubmed/11710352. Acesso em: 18 de set. de 2019.
  59. CHO, K.; HAN, C.; LEE, B. Loss of body weight and fat and improved lipid profiles in obese rats fed apple pomace or apple juice concentrate. J Med Food, Setembro 2013. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23909905. Acesso em: 18 de set. de 2019.
  60. GRIEP, L. M. O. et al. Colors of fruit and vegetables and 10-year incidence of stroke. Stroke, Novembro 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/ 21921279. Acesso em: 18 de set. de 2019.
  61. BODINHAM, C. L.; FROST, G. S.; ROBERTSON, M. D. Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr., Março 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19857367. Acesso em: 18 de set. de 2019.
  62. MAURER, H. R. Bromelain: biochemistry, pharmacology and medical use. Cellular and Molecular Life Sciences CMLS, Agosto 2001. Disponível em: https://link.springer. com/article/10.1007%2FPL00000936. Acesso em: 18 de set. de 2019.

Páginas: 1 2

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

22 Compart.
Compartilhar22
Twittar
Pin
Compartilhar